

NLP@Amazon in Berlin

Making Alexa smarter and more international

Hagen Fürstenau Sr. Manager Applied Science

ML and NLP at Amazon in Berlin

- Development Center established in Berlin in 2013
- Scientists and developers work on a broad range of ML&NLP topics
 - Alexa, Amazon Music, Amazon Robotics, AWS, Community Shopping, Fire TV, Search, ...
- Applied Science
 - Close interaction with software development teams
 - See impact of research on systems & products used around the world

Our Berlin Alexa group

- Enable customers to access information through Alexa
- Question Answering
 - Answer general or shopping-related questions
 - Leverage internal and external (web) data
 - Build ML models that scale to web-size data and answer in milliseconds
 - Make Alexa more conversational and natural

Machine Translation

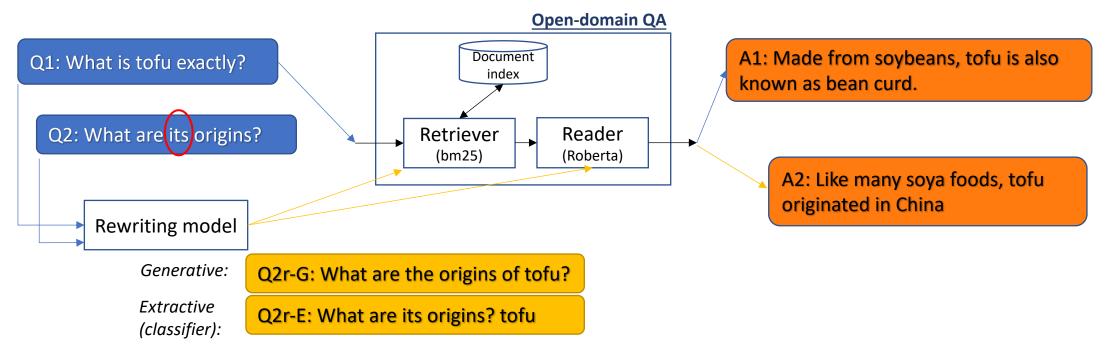
- Allow customers to access any information in their own language
- State-of-the-art translation quality for questions, answers, and offline data

Applied Science at Amazon

- Our projects always start with the customer
- Develop a vision for a product/feature "working backwards"
- Identify scientific challenges that need to be solved
- Keep close contact with the scientific community
 - Publish results in conference papers
 - Internships for PhD students to work with us
 - Support conferences and events
- Next: Some examples of recently published research...

Open-Domain Conversational QA (1)

- Question Rewriting (QR): Reformulate questions that rely on conversational context
- Reduce risk of providing an answer out of context & reduce required context size as conversation length grows
- But how does it impact Open-Domain QA system?



- QR is much more important for retriever than for reader!
- Extractive QR: better for retrievers based on lexical similarity & more efficient, but Generative QR achieves better reader results
 Was a
- QR solves easy anaphoric cases, but not practical for very long rewrites:

Del Tredici et al. 2021, Question Rewriting for Open-Domain Conversational QA: Best Practices and Limitations. CIKM 2021

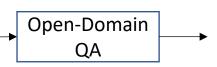
Was anyone opposed to him in this?

Was anyone opposed to Ira Hayes in revealing the truth that Harlon Block was still being misrepresented publicly as Hank Hansen?

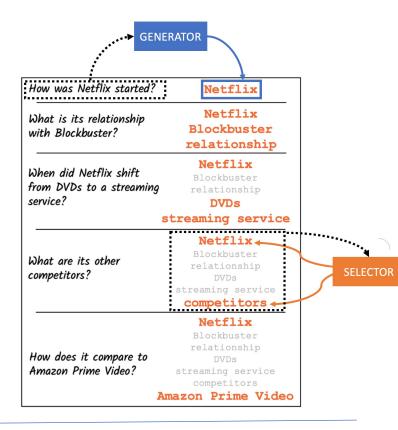
Open-Domain Conversational QA (2)

Alternative approach: Embed conversational history along with input question

Q1: What is tofu exactly? A1: Made from soybeans, tofu is also known as bean curd. Q2: What are its origins?



Keeping whole conversation does not scale. Can we remember only key concepts and attend to them?

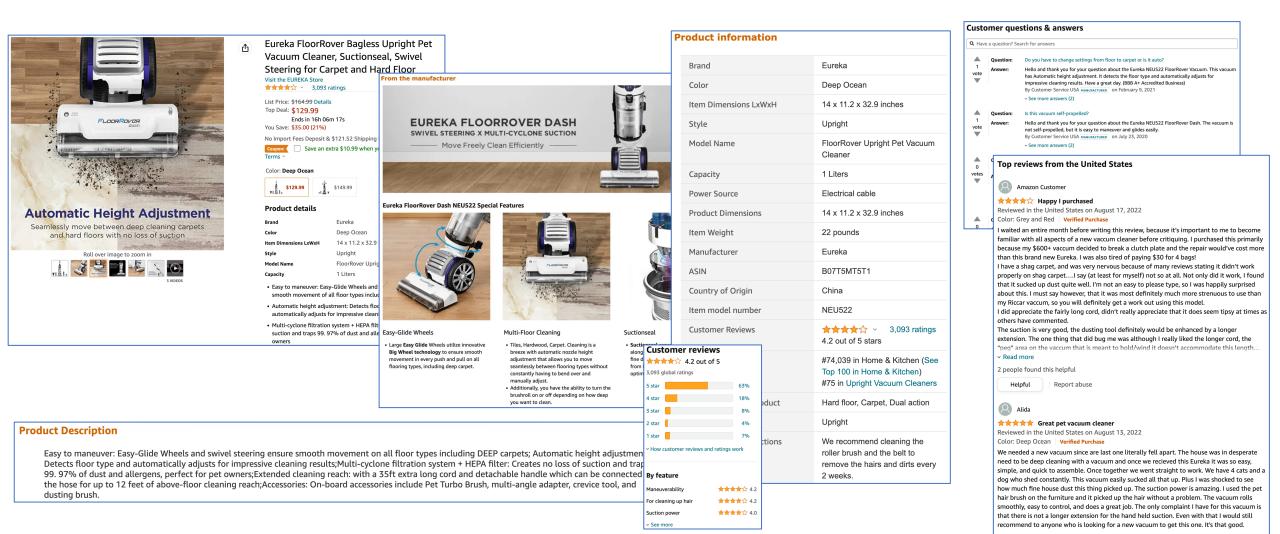


- At each turn, **generate** the key phrases to remember in the future, and add them to a set (the Common Ground)
- Given a new question, our model selects only elements from the Common Ground
- Human rewrites are used to automatically label the Common Ground for training the generator.
- This history embedding proves superior to Question Rewriting as it can better handle complex long-range dependencies

Del Tredici et al. 2022, From Rewriting to Remembering: Common Ground for Conversational QA Models. ACL Workshop on NLP for ConvAI

Product-specific QA – handling diverse data

- When exploring a product website, users have many questions about the given product, or related ones
- A lot of information in multiple formats is available: plain text, key-value pairs, tables, pictures, ...
- How to build a QA system that gives accurate and natural answers drawing from these diverse data sources?

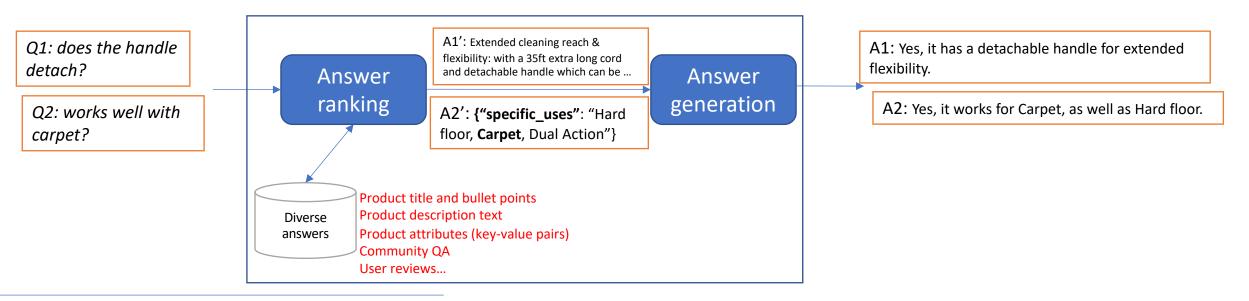


Product-specific QA – handling diverse data

Two challenges

- 1. Select the answer-bearing content from the page:
 - QA model to rank both plain text and semi-structured answer candidates (Transformer LM tuned on small in-domain data set)
 - Apply data augmentation and weak supervision to produce pseudo-labelled QA pairs from product websites
- 2. Produce a fluent direct answer to the question:
 - Generative model applied to the selected answer-bearing content
 - Challenge: Must be 99% faithful while as natural as possible

Question: works well with carpet?		
Source	Supporting Evidence	Relevance
Attribute	{"specific_uses": "Hard floor, Carpet, Dual Action"}	YES
Bullet Point	On-board accessories include Pet Turbo Brush, multi- angle adapter, crevice tool and dusting brush	NO
Description	Eureka FloorRover Bagless Upright Pet Vacuum	NO
	Cleaner for Carpet and Hard Floor	YES
Community QA	No there isn't a cover for the handle	NO
Reviews	My dad bought it and was very happy with it.	NO
Annotated answer: Yes, it works well for carpet, as well as hard floor.		



Shen et al. 2022. Product Answer Generation from Heterogeneous Sources: A New Benchmark and Best Practices. ACL Workshop on e-commerce and NLP.

Domain Adaptation for Machine Translation

- Problem: Adapt a general MT model to two domains A and B
 - Training first on A and then B will lead to catastrophic forgetting (of A)
- Elastic Weight Consolidation (EWC) modifies training objective
 - Regularization to keep model parameters close to those for A
 - Makes strong conditional independence assumptions
- Data Mixing is a practical way to maintain performance on A
 - Mix in a sample from domain A when training for domain B
 - Size of sample from A determines training set size \rightarrow hard to balance
- Combination of EWC and Data Mixing works best
 - Theoretical analysis shows that Data Mixing is a correction of EWC with weaker independence assumption!

Hasler et al. 2021, Improving the Quality Trade-Off for Neural Machine Translation Multi-Domain Adaptation. EMNLP 2021

The Devil is in the Details

- Vocabulary selection is used to speed up Neural Machine Translation
 - During decoding, only consider union of top-k translations of source tokens
- Minor degradation in BLEU, but noticeable drop in human evaluation!
 EN: to swal|low the bitter pill
 DE: in den sau|ren ap|fel bei|ßen
- Solution: Neural Vocabulary Selection
 - Predict sentence-specific target vocabulary from encoder representations
- Better quality on idiomatic translations (at same translation speed)

Domhan et al. 2022, The Devil is in the Details: On the Pitfalls of Vocabulary Selection in Neural Machine Translation. NAACL 2022

Jobs at Amazon

- Regularly offer Applied Science internships
 - Aimed at PhD students
 - Duration: 3-6 months, timing flexible
- Openings for permanent positions posted online
- Get in touch!
 - Our recruiter Michal Barabanow: present here at KONVENS!
 - http://amazon.jobs